Coumarin-4-ylmethoxycarbonyls as Phototriggers for Alcohols and Phenols

Akinobu Z. Suzuki, Takayoshi Watanabe, Mika Kawamoto, Keiko Nishiyama, Hirotaka Yamashita, Michiko Iwamura and Toshiaki Furuta*

Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 Japan

furuta@biomol.sci.toho-u.ac.jp

Synthesis

1,2,3,4-Di-O-isopropylidene-D-galactopyranosyl 7-methoxycoumarin-4-ylmethoxycarbonate (1a).

To a stirred solution of 82.9 mg (0.318 mmol) of 1,2,3,4-di-O-isopropylidene-D-galactopyranose in CH₂Cl₂ (2 mL) and CH₃CN (2.5 mL) was added 49.3 mg (0.404 mmol) of 4-dimethylaminopyridine and 104.0 mg (0.387 mmol) of 7-methoxycoumarin-4-ylmethoxycarbonyl chloride. The reaction mixture was stirred at room temperature for 45 min. The solvents were removed with rotovap. Purification by flash column chromatography (15 g of SiO₂, CH₂Cl₂/CH₃OH = 25/1) gave 123.9 mg (0.237 mmol. 94% yield) of **1a.**

1a. ¹H NMR (CDCl₃) δ 1.34 (3H, s), 1.35 (3H, s), 1.46 (3H, s), 1.52 (3H, s), 3.88 (3H, s), 4.09 (1H, ddd, J=1.6, 5.5 & 8.0 Hz), 4.26 (1H, dd, J= 1.6 & 7.8 Hz), 4.31-4.43 (3H, m), 4.64 (1H, dd, J=2.4 & 7.8 Hz), 5.27 (1H, d, J=14 Hz), 5.34 (1H, d, J=14 Hz), 5.55 (1H, d, J=4.9 Hz), 6.39 (1H, s), 6.85 (1H, s), 6.87 (1H, d, J= 8.4 Hz), 7.41 (1H, d, J=8.4 Hz); ¹³C NMR (CDCl₃/TMS) δ 24.49, 24.91, 25.95, 26.03, 55.80, 64.53, 65.67, 67.32, 70.37, 70.68, 70.82, 96.25, 101.23, 108.88, 109.79, 110.33, 110.44, 112.67, 124.43, 148.37, 154.48, 155.58, 160.71, 162.90; UV λ_{max}/nm (ε) solvent A: 322 (12,100), solvent C: 323 (13,100).

1,2,3,4-Di-O-isopropylidene-D-galactopyranosyl 6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonate (1b).

To a stirred solution of 325.8 mg (1.202 mmol) of 6-bromo-7-hydroxy-4-hydroxymethylcoumarin (**2b**) in CH₃CN (5 mL) was added 353.2 mg (2.89 mmol) of 4-dimethylaminopyridine and 264.0 mg (1.31 mmol) of 4-nitrophenyl chloroformate. The reaction mixture was stirred for 6 hr at room temperature. Then, another 152.5 mg (1.25 mmol) of 4-dimethylaminopyridine and 515 mg (1.99 mmol) of 1,2,3,4-di-*O*-isopropylidene-D-galactopyranose were added to the reaction mixture. After 24 hr, the mixture was diluted with CHCl₃, washed with 0.5 M citric acid and sat. NaCl, and dried over MgSO₄. Purification by column chromatography (50 g of SiO₂, n-Hexane/EtOAc = 3/2) gave 221.9 mg (0.398 mmol. 33% yield) of **1b**.

1b. ¹H NMR (CDCl₃/TMS) δ 1.34 (3H, s), 1.35 (3H, s), 1.47 (3H, s), 1.53 (3H, s), 4.08-4.13 (2H, m), 4.25 (1H, dd, J=1.5, 7.8 Hz), 4.33-4.37 (3H, m), 4.63 (1H, dd, J=2.3, 7.8 Hz), 5.24 (1H, d, J=14 Hz), 5.27 (1H, d, J=14 Hz), 5.55 (1H, d, J=5 Hz), 6.41 (1H, s), 7.04 (1H, s), 7.62 (1H, s); ¹³C NMR (CDCl₃/TMS) δ 24.45, 24.86, 25.90, 25.99, 64.19, 65.67, 67.43, 70.32, 70.64, 70.78, 96.21, 104.37, 106.86, 108.91, 109.80, 111.24, 111.72, 126.84, 147.57, 154.36, 154.41, 155.83, 160.29; UV λ_{max}/nm (ε) solvent A: 374 (15,000), solvent B: 376 (14,000).

1,2,3,4-Di-O-isopropylidene-D-galactopyranosyl 7-diethylaminocoumarin-4-ylmethoxycarbonate (1c).

To a stirred suspension of 271.6 mg (1.04 mmol) of 7-diethylamino-4-hydroxymethylcoumarin in CH_2Cl_2 (7 mL) was added 141.7 mg (1.16 mmol) of 4-dimethylaminopyridine and 232.0 mg (1.15 mmol) of 4-nitrophenyl chloroformate. The reaction mixture was stirred for 10 hr at room temperature. Thin layer chromatography indicated that the formation of intermediate 4-nitrophenyl carbonate completed. Then, another 142.2 mg (1.16 mmol) of 4-dimethylaminopyridine and 265.9 mg (1.02 mmol) of 1,2,3,4-di-O-isopropylidene-D-galactopyranose were added to the reaction mixture. After 20 hr, the mixture was diluted with CH_2Cl_2 , washed with sat. NaHCO₃ and sat. NaCl, and dried over MgSO₄. Purification by flash column chromatography (23 g of SiO₂, $CH_2Cl_2/CH_3OH = 85/1$ then $CH_2Cl_2/CH_3OH = 50/1$) gave 440.9 mg (0.826 mmol. 81% yield) of **1c**.

1c. ¹H NMR (CDCl₃/TMS) δ 1.21(6H, t, J=7.3 Hz), 1.34 (3H, s), 1.35 (3H, s), 1.46 (3H, s), 1.52 (3H, s), 3.41 (4H, q, J=7.3 Hz), 4.08 (1H, ddd, J=1.5, 5 & 8.5 Hz), 4.27 (1H, dd, J=1.5, 7.8 Hz), 4.33-4.37 (3H, m), 4.63 (1H, dd, J=2.3, 7.8 Hz), 5.23 (1H, d, J=14 Hz), 5.30 (1H, d, J=14 Hz), 5.55 (1H, d, J=4.9 Hz), 6.17 (1H, s), 6.50 (1H, d, J=2.4 Hz), 6.57 (1H, dd, J=2.4, 8.9 Hz), 7.28 (1H, d, J=8.9 Hz); ¹³C NMR (CDCl₃/TMS) δ 12.42(x 2), 24.49, 24.92, 25.95, 26.04, 44.77(x 2), 64.73, 65.65, 67.13, 70.39, 70.66, 70.81, 96.24, 97.87, 105.86, 106.78, 108.69, 108.88, 109.74, 124.40, 148.60, 150.64, 154.58, 156.28, 161.71; UV λ_{max}/nm (ε) solvent B:

1,2,3,4-Di-O-isopropylidene-D-galactopyranosyl 6,7-dimethoxycoumarin-4-ylmethoxycarbonate (1d).

To a stirred solution of 65.4 mg (0.251 mmol) of 1,2,3,4-di-O-isopropylidene-D-galactopyranose in CH₂Cl₂ (5 mL) and CH₃CN (2 mL) was added 39.0 (0.32 mmol) of 4-dimethylaminopyridine and 90.8 mg (0.304 mmol) of 6,7-dimethoxycoumarin-4-ylmethoxycarbonylchloride. The reaction mixture was stirred at room temperature for 2 hr. The solvent was removed with rotovap. Purification by flash column chromatography (20 g of SiO₂, CH₂Cl₂/CH₃OH = 80/1 then CH₂Cl₂/CH₃OH = 50/1) gave 123.9 mg (0.237 mmol. 94% yield) of **1d.**

1d. ¹H NMR (CDCl₃) δ 1.34 (3H, s), 1.35 (3H, s), 1.46 (3H, s), 1.52 (3H, s), 3.93 (3H, s), 3.95 (3H, s), 4.09 (1H, ddd, J=1.5, 5.5 & 8.0 Hz), 4.26 (1H, dd, J=1.5 & 7.8 Hz), 4.31-4.44 (3H, m), 4.64 (1H, dd, J= 2.4 & 7.8 Hz), 5.28 (1H, d, J=15 Hz), 5.34 (1H, d, J=15 Hz), 5.54 (1H, d, J= 4.9 Hz), 6.43 (1H, s), 6.84 (1H, s), 6.87 (1H, s); ¹³C NMR (CDCl₃/TMS) δ 24.48, 24.90, 25.94, 26.02, 56.38, 56.53, 64.67, 65.68, 67.36, 70.36, 70.67, 70.82, 96.24, 100.35, 103.91, 108.88, 109.36, 109.79, 110.80, 146.41, 148.12, 149.77, 153.01, 154.52, 160.89; UV λ_{max}/nm (ε) solvent A: 290 (4,500), 344 (10,800).

1,2,3,4-Di-O-isopropylidene-D-galactopyranosyl 6-nitroveratryloxycarbonate (1e).

To a stirred solution of 143.8 mg (0.552 mmol) of 1,2,3,4-di-O-isopropylidene-D-galactopyranose in CH₂Cl₂ (3.5 mL) and CH₃CN (1 mL) was added 84.3 mg (0.69 mmol) of 4-dimethylaminopyridine and 180.5 mg (0.655 mmol) of 6-nitroveratryloxycarbonyl chloride. The reaction mixture was stirred at room temperature for 3 hr. The solvents were removed with rotovap. Purification by flash column chromatography (20 g of SiO₂, CH₂Cl₂/CH₃OH = 98/1 then CH₂Cl₂/CH₃OH = 25/1) gave 169.1 mg (0.339 mmol. 61% yield) of **1e.**

1e. ¹H NMR (CDCl₃) δ 1.32 (3H, s), 1.34 (3H, s), 1.46 (6H, s), 3.96 (3H, s), 4.01 (3H, s), 4.11 (1H, ddd, J= 1.0, 5.5 & 7.0 Hz), 4.26 (1H, dd, J=1.0 & 8.0 Hz), 4.32-4.37 (3H, m), 4.62 (1H, dd, J=2.2 & 8.0 Hz), 5.53 (1H, d, J=4.9 Hz), 5.59 (1H, d, J=14 Hz), 5.63 (1H, d, J=14 Hz), 7.09 (1H, s), 7.74 (1H, s); ¹³C NMR (CDCl₃/TMS) δ 24.47, 24.91, 25.92 (X 2), 56.40, 56.58, 65.71, 66.30, 67.10, 70.35, 70.67, 70.88, 96.25, 108.09, 108.82, 109.47, 109.75, 127.12, 139.41, 148.16, 153.81, 154.67; UV λ_{max}/nm (ε)

Phenyl 6-Bromo-7-hydroxycoumarin-4-ylmethoxycarbonate (3).

To a stirred suspension of 134.9 mg (0.498 mmol) of **2b** in CH₃CN (3.5 mL) was added 147 μ L (0.84 mmol) of diisopropyl ethylamine and 63 μ L (0.50 mmol) of phenyl chloroformate. The reaction mixture was stirred at room temperature for 3.5 hr. The solvents were removed with rotovap. Purification by flash column chromatography (17g of SiO₂, n-Hexane/EtOAc = 5/2) gave 117.7mg (0.301 mmol. 60% yield) of **3.**

3. ¹H NMR (CDCl₃/TMS) δ 5.37 (2H, s), 6.49 (1H, s), 7.05 (1H, s), 7.10-7.15 (3H, m), 7.40-7.45 (2H, m), 7.67 (1H, s); ¹³C NMR (CDCl₃/TMS) δ 65.28, 103.20, 106.32, 109.90, 110.35, 121.22, 126.40, 128.74, 129.69, 148.60, 150369, 152.43, 153.89, 157.59, 159.52; UV λ_{max}/nm (ε) solvent A: 372 (17,900).

6-Bromo-7-methoxymethoxy-4-hydroxymethylcoumarin (4).

To a stirred suspension of 1.0846 g (4.001 mmol) of **2b** in CH_2Cl_2 (10 mL) was added 836 μ L (4.80 mmol) of diisopropyl ethylamine and 365 μ L (4.81 mmol) of chloromethyl methyl ether. The reaction mixture was stirred at room temperature for 40 min. The reaction mixture was diluted with $CHCl_3$, washed with 0.5 M citric acid and dried over $MgSO_4$. The solvents were removed with rotovap and high vacuum rotovap to give 1.065 g (3.380 mmol, 85% yield) of **4**.

4. ¹H NMR (CDCl₃/TMS) δ 7.70 (s, 1H), 7.16 (s, 1H), 5.32 (s, 2H), 3.52 (s, 3H), 6.52 (t, 1H, J = 1.3 Hz), 4.86 (dd, 2H, J = 5.6, 1.3 Hz), 2.07 (t, 1H, J = 5.6 Hz); ¹³C NMR (DMSO-d₆/TMS) δ 56.23 (q), 59.06 (t), 94.80 (t), 103.51 (d), 107.49 (s), 108.96 (d), 112.75 (s), 128.19 (d), 153.51 (s), 155.13 (s), 155.76 (s), 159.93 (s); IR (ATR) 3508, 1703, 1604, 1267, 1158, 1095, 1083, 1032, 1009, 974, 894, 842 cm⁻¹.

6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl chloride (5).

In a glass pressure bottle (Hyperglasstor, THG-A2, TAIATSU Techno) 1.9834 g (6.684 mmol) of triphogene was placed. To this

195.4 μ L (0.483 mmol) of aliquat^R 336 in n-hexane (4 mL) was added. The mixture was stirrer at room temperature for 19 hr to generate phosgene. To a stirred solution of 321.7 mg (1.021 mmol) of 4 in toluene (2 mL) and THF (3 mL) was added the phosgene solution (4 mL). The reaction mixture was stirred at 0°C for 3.5 hr. The solvents were removed under reduced pressure. The residual solid was washed with CHCl₃ and n-hexane (1/1 v/v) twice to give 352.0 mg (0.932 mmol, 91% yield) of **5**.

5. ¹H NMR (CDCl₃/TMS) δ 3.53 (3H, s, MOM), 5.33 (2H, s, MOM), 5.42 (2H, d, J=1.5, H-4), 6.43 (1H, s, H-3), 7.19 (1H, s, H-8), 7.64 (1H, s, H-5); ¹³C NMR (CDCl₃/TMS) δ 56.73(q), 67.08(t), 95.17(t), 104.19(d), 108.82(s), 111.77(d), 112.58(s), 127.27(s), 145.28(s), 150.62(s), 154.27(s), 156.74(s), 159.49(s); IR (ATR) 1756, 1719, 1603, 1273, 1164, 1151 cm⁻¹.

3-(6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl)-1,2-dioctanoyl glycerol.

To a stirred solution of 169.1 mg (0.491 mmol) of 1,2-dioctanoyl glycerol (diC₈) in CH₃CN (4 mL) were added 115.3 mg (0.944 mmol) of 4-dimethylaminopyridine and 192.3 mg (0.509 mmol) of 5. The reaction mixture was stirred at room temperature for 40 min. The solvents were removed with rotovap. Purification by flash column chromatography (35 g of SiO₂, n-hexane/AcOEt = 35/10) gave 321.1 mg (0.468 mmol. 95% yield) of the title compound.

¹H NMR (CDCl₃) δ 7.68 (s, 1H), 7.17 (s, 1H), 6.42 (t, 1H, J = 1.0 Hz), 5.32 (s, 1H), 5.30 (m, 1H), 5.28 (d, 1H, J = 1.0 Hz), 4.45 (dd, 1H, J = 11.9, 4.0 Hz), 4.35 (dd, 1H, J = 11.5, 4.6 Hz), 4.30 (dd, 1H, J = 11.5, 5.6 Hz), 4.19 (dd, 1H, J = 11.9, 5.6 Hz), 3.52 (s, 3H), 2.35 (t, 2H, J = 7.6 Hz), 2.33 (t, 2H, J = 7.6 Hz), 1.62 (4H, m), 1.28 (16H, m), 0.87 (6H, m); ¹³C NMR (CDCl₃/TMS) δ 173.2 (s), 172.9 (s), 159.8 (s), 156.5 (s), 154.2 (s), 147.0 (s), 127.4 (d), 112.1 (s), 111.8 (d), 108.6 (s), 104.1 (d), 95.1 (t), 68.4 (s), 66.6 (t), 64.4 (t), 61.6 (t), 56.7 (q), 34.1 (t), 34.0 (t), 31.6 (t), 29.0 (t), 28.9 (t), 24.8 (t), 22.5 (t), 14.0 (q); IR (ATR) 1735, 1606, 1441, 1277, 1202, 1160 cm⁻¹; MS (ESI) m/z 707.10 (C₃₂H₄₅⁷⁹BrO₁₁+Na⁺), 709.90 (C₃₂H₄₅⁸¹BrO₁₁+Na⁺).

3-(6-Bromo-7-hydroxy-4-ylmethoxycarbonyl)-1,2-dioctanoyl glycerol (7).

A solution of 79.9 mg (0.117 mmol) of 3-(6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl)-1,2-dioctanoyl glycerol in trifluoroacetic acid (2 mL) was stirred at room temperature for 15 min. The solvent was evaporated by rotovap and high vacuum rotovap to give 71.9 mg (0.112 mmol. 96% yield) of **7**.

7. ${}^{1}H$ NMR (CDCl₃) δ 7.63 (s, 1H), 7.05 (s, 1H), 6.40 (t, 1H, J = 1.3 Hz), 5.33 (m, 1H), 5.28 (d, 2H, J = 1.3 Hz), 4.45 (dd, 1H, J = 11.9, 4.0 Hz), 4.35 (dd, 1H, J = 11.5, 4.3 Hz), 4.31 (dd, 1H, J = 11.5, 5.3 Hz), 4.20 (dd, 1H, J = 11.9, 5.6 Hz), 2.35 (t, 2H, J = 7.6 Hz), 2.34 (t, 2H, J = 7.6 Hz), 1.62 (m, 4H), 1.28 (m, 16H), 0.87 (m, 6H); ${}^{13}C$ NMR (CDCl₃/TMS) δ 173.4 (s), 173.0 (s), 160.2 (s), 155.9 (s), 154.4 (s), 154.2 (s), 147.4 (s), 126.8 (d), 111.6 (s), 111.3 (d), 106.9 (s), 104.4 (d), 68.5 (s), 66.6 (t), 64.4 (t), 61.7 (t), 34.1 (t), 34.0 (t), 31.6 (t), 29.0 (t), 28.9 (t), 24.8 (t), 22.6 (t), 14.0 (q); IR (ATR) 3375 (broad), 1724, 1607, 1441, 1409, 1280, 1218, 1160 cm⁻¹; MS (ESI) m/z 663.00 (C₃₀H₄₁⁷⁹BrO₁₀+Na⁺), 664.80 (C₃₀H₄₁⁸¹BrO₁₀+Na⁺).

O-(6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl)-N-tert-butoxycarbonyl-L-tyrosine methyl ester.

To a stirred solution of 236.8 mg (0.802 mmol) of *N-tert*-butoxycarbonyl-L-tyrosine methyl ester in CH₃CN (6 mL) were added 184.4 mg (1.51 mmol) of 4-dimethylaminopyridine and 268.8 mg (0.71 mmol) of 5. The reaction mixture was stirred at room temperature for 15 min. The solvents were removed with rotovap. Purification by flash column chromatography (30 g of SiO₂, $CH_2Cl_2/CH_3OH = 100/1$ then $CH_2Cl_2/CH_3OH = 80/1$) gave 455.1 mg (0.71 mmol. 100% yield) of the title compound.

¹H NMR (CDCl₃) δ 7.72 (s, 1H), 7.20 7.12 (m, 5H), 6.47 (s, 1H), 5.38 (s, 2H), 5.32 (s, 2H), 5.17 (d, 1H, J = 7.9 Hz), 4.59 (m, 1H), 3.72 (s, 3H), 3.52 (s, 3H), 3.15 (dd, 1H, J = 13.9, 5.6 Hz), 3.04 (dd, 1H, J = 13.9, 6.3 Hz), 1.42 (s, 9H); ¹³C NMR (CDCl₃/TMS) δ 171.9 (s), 159.6 (s), 156.2 (s), 154.8 (s), 154.0 (s), 152.7 (s), 149.6 (s), 146.9 (s), 134.3 (s), 130.3 (d), 127.3 (d), 120.6 (d), 111.9 (s), 111.6 (d), 108.4 (s), 103.8 (d), 94.9 (t), 79.7 (s), 64.5 (t), 56.5 (q), 54.1 (d), 52.1 (q), 37.4 (t), 28.0 (q); IR (ATR) 1735, 1605, 1507, 1366, 1243, 1218, 1156 cm⁻¹; MS (ESI) m/z 657.95 (C₂₈H₃₀⁷⁹BrNO₁₁+Na⁺), 659.75 (C₂₈H₃₀⁸¹BrNO₁₁+Na⁺).

O-(6-Bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-L-tyrosine methyl ester hydrochloride (8).

Hydrogen chloride gas was introduced into a stirred solution of 62.6 mg (0.098 mmol) of *O*-(6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl)-*N-tert*-butoxycarbonyl-L-tyrosine methyl ester in CH₂Cl₂ (4 mL) at room tremperature for 2 min. The reaction mixture was stirred at room temperature for 3 hr. The solvent and the excess HCl were removed by rotovap and high vacuum rotovap to give 52.0 mg (0.098 mmol 100% yield) of **8**.

8 (HCl salt). ¹H NMR (CDCl₃) δ 7.83 (s, 1H), 7.36-7.25 (m, 4H), 6.84 (s, 1H), 6.32 (s, 1H), 5.47 (s, 2H), 4.36 (dd, 1H, J = 7.3, 6.3 Hz), 3.82 (s, 3H), 3.31 (dd, 1H, J = 14.2, 6.3 Hz), 3.20 (dd, 1H, J = 14.2, 7.3 Hz); ¹³C NMR (CDCl₃/TMS) δ 170.3 (s), 162.3 (s), 159.3 (s), 155.7 (s), 154.5 (s), 152.2 (s), 150.3 (s), 133.7 (s), 131.8 (d), 129.5 (d), 122.8 (d), 112.0 (s), 110.8 (d), 108.1 (s), 104.4 (d), 66.4 (t), 55.1 (q), 53.7 (d), 36.7 (t); IR (ATR) 3383, 1175, 1736, 1608, 14006, 1272, 1249, 1235 cm⁻¹; MS (ESI) m/z 491.90 (C₂₁H₁₈⁷⁹BrNO₈+H⁺), 493.75 (C₂₁H₁₈⁸¹BrNO₈+H⁺).

5' - (6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl) - 2', 3' - O-isopropylideneadenosine.

To a stirred suspension of 248.4 mg (0.757 mmol) of **4** in CH₃CN (6 mL) were added 194.8 mg (1.60 mmol) of 4-dimethylaminopyridine and 167.5 mg (0.814 mmol) of 4-nitrophenyl chloroformate at room temperature. After 1.5 hr, another 110.3 mg (0.903 mmol) of 4-dimethylaminopyridine and 253.9 mg (0.826 mmol) of 2',3'-isopropylideneadenosine were added. The reaction mixture was stirred at room temperature for 3.5 hr. The solvents were removed with rotovap. The residue was diluted with CHCl₃ (30 mL), and washed with 0.5 M citric acid and sat. NaCl. The organic layer was dried over MgSO₄, and the solvent was removed by rotovap and high vacuum rotovap. Purification by flash column chromatography (35 g of SiO₂, CH₂Cl₂/CH₃OH = 30/1 then CH₂Cl₂/CH₃OH = 21/1) gave 307.4 mg (0.474 mmol. 63% yield) of the product.

¹H NMR (CDCl₃/TMS) δ 1.42 (s, 3H), 1.63 (s, 3H), 3.51 (s, 3H), 4.41 (dd, 1H, J = 11.2, 5.9 Hz), 4.51 (dd, 1H, J = 11.2, 4.0 Hz), 4.56 (m, 1H), 5.16 (dd, 1H, J = 6.3, 3.0 Hz), 5.22 (d, 2H, J = 1.7 Hz), 5.31 (s, 2H), 5.51 (dd, 1H, J = 6.3, 2.0 Hz), 6.19 (d, 1H, J = 2.0 Hz), 6.31 (br, 2H), 6.44 (t, 1H, J = 1.7 Hz), 7.12 (s, 1H), 7.60 (s, 1H), 7.94 (s, 1H), 8.32 (s, 1H); ¹³C NMR (CDCl₃/TMS) δ 25.3 (q), 27.0 (q), 56.6 (q), 64.2 (t), 68.1 (t), 81.4 (d), 84.3 (d), 84.8 (d), 90.7 (d), 95.0 (t), 103.9 (d), 108.5 (s), 111.5 (d), 112.0 (s), 114.5 (s), 120.0 (s), 127.2 (d), 139.5 (d), 147.0 (s), 149.1 (s), 153.1 (d), 153.9 (s), 154.0 (s), 155.8 (s), 156.3 (s),159.9 (s); IR (ATR) 1731, 1637, 1604, 1266, 1214, 1155 cm⁻¹; MS (ESI) m/z 647.95 (C₂₆H₂₆⁷⁹BrN₅O₁₀+H⁺), 649.75 (C₂₆H₂₆⁸¹BrN₅O₁₀+H⁺).

5'-(6-Bromo-7-hydroxy-4-ylmethoxycarbonyl)adenosine (9).

To a stirred solution of 181.9 mg (0.281 mmol) of 5'-(6-Bromo-7-methoxymethoxycoumarin-4-ylmethoxycarbonyl)-2',3'-O-isopropylideneadenosine in trifluoroacetic acid (2 mL) was added 80 μ L of water at room temperature. After 20 hr, the solvents were evaporated by rotovap and high vacuum rotovap. Purification by flash column chromatography (15 g of SiO₂,

 $CH_2Cl_2/CH_3OH = 15/1$ then $CH_3OH)$ gave 92.5 mg (0.117 mmol. 42% yield) of 9.2TFA.

9·(2TFA salt). ¹H NMR (CDCl₃/TMS) δ 8.31 (s, 1H), 8.15 (s, 1H), 7.84 (s, 1H), 7.29 (s, 2H), 6.81 (s, 1H), 6.14 (s, 1H), 5.93 (d, 1H, J = 4.9 Hz), 5.60 (d, 1H, J = 5.6 Hz), 5.44 (d, 1H, J = 5.3 Hz), 5.38 (s, 2H), 4.67 (m, 1H), 4.47 (dd, 1H, J = 11.2, 3.6 Hz), 4.38 (dd, 1H, J = 11.2, 6.2 Hz), 4.26 (m, 1H), 4.14 (m, 1H); ¹³C NMR (CDCl₃/TMS) δ 159.8 (s), 156.1 (s), 154.2 (s), 153.9 (s), 152.7 (d), 152.4 (s), 149.4 (s), 149.2 (s), 139.7 (d), 128.2 (d), 119.2 (s), 109.3 (s), 108.3 (d), 107.3 (s), 103.4 (d), 87.8 (d), 81.3 (d), 72.9 (d), 70.3 (d), 68.2 (t), 64.6 (t); IR (ATR) 3337 (broad), 3184 (broad), 1685, 1646, 1604, 1406, 1271, 1249, 1206, 1139 cm⁻¹; MS (ESI) m/z 563.90 (C₂₁H₁₈⁷⁹BrN₅O₉+H⁺), 565.75 (C₂₁H₁₈⁸¹BrN₅O₉+H⁺).

Quantum efficiency measurement.

Into a pyrex test tube of 12 mm diameter was placed 2 mL of 10 μ M substrate solution in K-MOPS solution (pH 7.2) containing 1% DMSO. The solution was irradiated at 350 nm using either two or four RPR 350 nm lamps. Aliquots of 10 μ L were removed periodically and analyzed by HPLC. The light output for the quantum efficiencies measurement was performed using ferrioxalate actinometry.

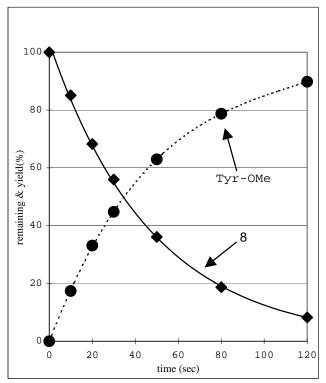


Figure 1. Time course of photolysis of Bhcmoc-Tyr-OMe (8) in solvent A upon 350 nm irradiation (two RPR 350 nm lamps). Concentrations of 8 and Tyr-OMe were quantified by HPLC analysis.

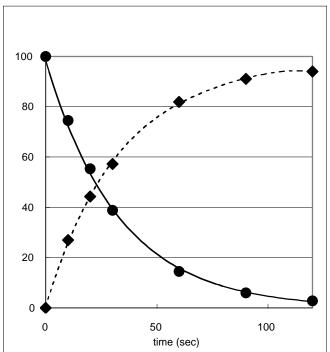


Figure 2. Time course of photolysis of 5'-Bhcmocadenosine (9) in solvent A upon 350 nm irradiation (four RPR 350 nm lamps). Concentrations of 9 and adenosine were quantified by HPLC analysis.

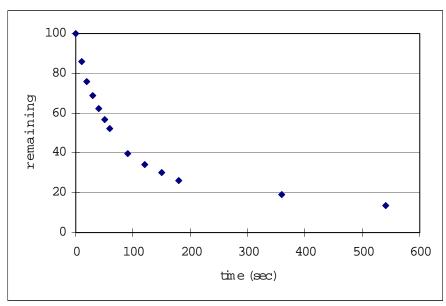


Figure 3. Time course of photolysis of Bhcmoc-dic8 (7) in solvent A upon 350 nm irradiation (two RPR 350 nm lamps). Concentrations of 7 were quantified by HPLC analysis.